Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708682

RESUMO

Hepatitis E virus (HEV) infects roughly 20 million people worldwide, causing self-limiting acute hepatic disease that can evolve into a chronic course. HEV-3, HEV-4, and HEV-7 genotypes are zoonotic and transmitted to humans by consuming raw or undercooked meat. Here, we developed an indirect ELISA based on the recombinant HEV-3 capsid and performed a seroprevalence study on domestic swine in northeastern Brazil. Our in-house ELISA was initially validated using a subset of 79 sera characterized by concordant results for two distinct commercial ELISA kits. Our ELISA exhibited excellent sensitivity (94%) and specificity (100%), with an area under the curve of 0.99 Further testing, including 212 swine sera, revealed a seroprevalence of 57.5% (95% confidence interval, 50.6-64.3%). Our findings indicate that the novel ELISA test could accurately detect specific anti-HEV antibodies in domestic pigs and should be further validated in humans and other mammals.

2.
Microbiol Spectr ; : e0421823, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651879

RESUMO

SARS-CoV-2 virus emerged as a new threat to humans and spread around the world, leaving a large death toll. As of January 2023, Brazil is among the countries with the highest number of registered deaths. Nonpharmacological and pharmacological interventions have been heterogeneously implemented in the country, which, associated with large socioeconomic differences between the country regions, has led to distinct virus spread dynamics. Here, we investigate the spatiotemporal dispersion of SARS-CoV-2 lineages in the Pernambuco state (Northeast Brazil) throughout the distinct epidemiological scenarios that unfolded in the first 2 years of the pandemic. We generated a total of 1,389 new SARS-CoV-2 genomes from June 2020 to August 2021. This sampling captured the arrival, communitary transmission, and the circulation of the B1.1, B.1.1.28, and B.1.1.33 lineages; the emergence of the former variant of interest P.2; and the emergence and fast replacement of all previous variants by the more transmissible variant of concern P.1 (Gamma). Based on the incidence and lineage spread pattern, we observed an East-to-West to inner state pattern of transmission, which is in agreement with the transmission of more populous metropolitan areas to medium- and small-size country-side cities in the state. Such transmission patterns may be partially explained by the main routes of traffic across municipalities in the state. Our results highlight that the fine-grained intrastate analysis of lineages and incidence spread can provide actionable insights for planning future nonpharmacological intervention for air-borne transmissible human pathogens.IMPORTANCEDuring the COVID-19 pandemic, Brazil was one of the most affected countries, mainly due its continental-size, socioeconomic differences among regions, and heterogeneous implementation of intervention methods. In order to investigate SARS-CoV-2 dynamics in the state of Pernambuco, we conducted a spatiotemporal dispersion study, covering the period from June 2020 to August 2021, to comprehend the dynamics of viral transmission during the first 2 years of the pandemic. Throughout this study, we were able to track three significant epidemiological waves of transmission caused by B1.1, B.1.1.28, B.1.1.33, P.2, and P.1 lineages. These analyses provided valuable insights into the evolution of the epidemiological landscape, contributing to a deeper understanding of the dynamics of virus transmission during the early years of the pandemic in the state of Pernambuco.

3.
Sci Rep ; 14(1): 2178, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272944

RESUMO

Recognition of the mRNA 5' end is a critical step needed for translation initiation. This step is performed by the cap binding protein eIF4E, which joins the larger eIF4G subunit to form the eIF4F complex. Trypanosomatids have a minimum of five different eIF4F-like complexes formed through specific but not well-defined interactions between four different eIF4E and five eIF4G homologues. The EIF4E6/EIF4G5 complex has been linked with the stage-specific translation of mRNAs encoding the major Trypanosoma brucei virulence factors. Here, to better define the molecular basis for the TbEIF4E6/TbEIF4G5 interaction, we describe the identification of the peptide interacting with TbEIF4E6 in the region comprising residues 79-166 of TbEIF4G5. The TbEIF4E6-TbEIF4G5_79-116 complex reconstituted with recombinant proteins is highly stable even in the absence of cap-4. The crystal structure of the complex was subsequently solved, revealing extensive interacting surfaces. Comparative analyses highlight the conservation of the overall structural arrangement of different eIF4E/eIF4G complexes. However, highly different interacting surfaces are formed with distinct binding contacts occurring both in the canonical and noncanonical elements within eIF4G and the respective eIF4E counterpart. These specific pairs of complementary interacting surfaces are likely responsible for the selective association needed for the formation of distinct eIF4F complexes in trypanosomatids.


Assuntos
Fator de Iniciação 4F em Eucariotos , Trypanosoma brucei brucei , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Trypanosoma brucei brucei/genética , Ligação Proteica , RNA Mensageiro/metabolismo
4.
Heliyon ; 9(8): e18994, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600420

RESUMO

In late 2021, a new variant of SARS-CoV-2 called Omicron emerged, replacing Delta worldwide. Although it has been associated with a lower risk of hospitalization and severe forms of COVID-19, there is little evidence of its relationship with specific symptoms and viral load. The aim of this study was to verify the relationship between Delta and Omicron variants of concern, viral load, and the occurrence of symptoms in individuals with COVID-19. Nasopharyngeal swab samples were collected and sequenced from patients with COVID-19 from the Northeast Region of Brazil between August 2021 and March 2022. The results showed a gradual replacement of the Delta variant by the Omicron variant during the study period. A total of 316 samples (157 Delta and 159 Omicron) were included. There was a higher prevalence of symptoms in Delta-infected individuals, such as coryza, olfactory and taste disturbances, headache, and myalgia. There was no association between viral load and the variants analyzed. The results reported here contribute to the understanding of the symptoms associated with the Delta and Omicron variants in individuals affected by COVID-19.

5.
Clin Microbiol Infect ; 29(3): 392.e1-392.e5, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375745

RESUMO

OBJECTIVES: We aimed to investigate the real-life performance of the rapid antigen test in the context of a primary healthcare setting, including symptomatic and asymptomatic individuals that sought diagnosis during an Omicron infection wave. METHODS: We prospectively accessed the performance of the DPP SARS-CoV-2 Antigen test in the context of an Omicron-dominant real-life setting. We evaluated 347 unselected individuals (all-comers) from a public testing centre in Brazil, performing the rapid antigen test diagnosis at point-of-care with fresh samples. The combinatory result from two distinct real-time quantitative PCR (RT-qPCR) methods was employed as a reference and 13 samples with discordant PCR results were excluded. RESULTS: The assessment of the rapid test in 67 PCR-positive and 265 negative samples revealed an overall sensitivity of 80.5% (CI 95% = 69.1%-89.2%), specificity of 99.2% (CI 95% = 97.3%-99.1%) and positive/negative predictive values higher than 95%. However, we observed that the sensitivity was dependent on the viral load (sensitivity in Ct < 31 = 93.7%, CI = 82.8%-98.7%; Ct > 31 = 47.4%, CI = 24.4%-71.1%). The positive samples evaluated in the study were Omicron (BA.1/BA.1.1) by whole-genome sequencing (n = 40) and multiplex RT-qPCR (n = 17). CONCLUSIONS: Altogether, the data obtained from a real-life prospective cohort supports that the rapid antigen test sensitivity for Omicron remains high and underscores the reliability of the test for COVID-19 diagnosis in settings with high disease prevalence and limited PCR testing capability.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Brasil , Teste para COVID-19 , Estudos Prospectivos , Reprodutibilidade dos Testes , Atenção Primária à Saúde , Sensibilidade e Especificidade
6.
Virus Evol ; 9(2): vead059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288387

RESUMO

Dengue virus serotype 2, genotype Cosmopolitan (DENV-2-GII), is one of the most widespread DENV strains globally. In the USA, DENV-2 epidemics have been dominated by DENV-2 genotype Asian-American (DENV-2-GIII), and the first cases of DENV-2-GII were only described in 2019, in Peru, and in 2021 in Brazil. To gain new information about the circulation of DENV-2-GII in Brazil, we sequenced 237 DENV-2 confirmed cases sampled between March 2021 and March 2023 and revealed that DENV-2-GII is already present in all geographic regions of Brazil. The phylogeographic analysis inferred that DENV-2-GII was introduced at least four times in Brazil, between May 2020 and August 2022, generating multiple clades that spread throughout the country with different success. Despite multiple introductions of DENV-2-GII, analysis of the country-wide laboratory surveillance data showed that the Brazilian dengue epidemic in 2022 was dominated by DENV-1 in most states. We hypothesize that massive circulation of DENV-2-GIII in previous years in Brazil might have created a population immune barrier against symptomatic homotypic reinfections by DENV-2-GII, leading to sustained cryptic circulation in asymptomatic cases and localized outbreaks of this new genotype. In summary, our study stresses the importance of arboviral genomic surveillance to close monitoring and better understanding the potential impact of DENV-2-GII in the coming years.

7.
RNA Biol ; 18(12): 2433-2449, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33945405

RESUMO

The mRNA cap-binding protein, eIF4E, mediates the recognition of the mRNA 5' end and, as part of the heterotrimeric eIF4F complex, facilitates the recruitment of the ribosomal subunits to initiate eukaryotic translation. Various regulatory events involving eIF4E and a second eIF4F subunit, eIF4G, are required for proper control of translation initiation. In pathogenic trypanosomatids, six eIF4Es and five eIF4Gs have been described, several forming different eIF4F-like complexes with yet unresolved roles. EIF4E5 is one of the least known of the trypanosomatid eIF4Es and has not been characterized in Leishmania species. Here, we used immunoprecipitation assays, combined with mass-spectrometry, to identify major EIF4E5 interacting proteins in L. infantum. A constitutively expressed, HA-tagged, EIF4E5 co-precipitated mainly with EIF4G1 and binding partners previously described in Trypanosoma brucei, EIF4G1-IP, RBP43 and the 14-3-3 proteins. In contrast, no clear co-precipitation with EIF4G2, also previously reported, was observed. EIF4E5 also co-precipitated with protein kinases, possibly associated with cell-cycle regulation, selected RNA binding proteins and histones. Phosphorylated residues were identified and mapped to the Leishmania-specific C-terminal end. Mutagenesis of the tryptophan residue (W53) postulated to mediate interactions with protein partners or of a neighbouring tryptophan conserved in Leishmania (W45) did not substantially impair the identified interactions. Finally, the crystal structure of Leishmania EIF4E5 evidences remarkable differences in the eIF4G interfacing region, when compared with human eIF4E-1 and with its Trypanosoma orthologue. Mapping of its C-terminal end near the cap-binding site also imply relevant differences in cap-binding function and/or regulation.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Leishmania/metabolismo , Mapas de Interação de Proteínas , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Leishmania/genética , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência
8.
Mem Inst Oswaldo Cruz ; 114: e180585, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166480

RESUMO

Hepatitis E virus (HEV), an emerging virus associated with acute hepatic disease, leads to thousands of deaths worldwide. HEV has already been reported in Brazil; however, there is a lack of epidemiological and molecular information on the genetic variability, taxonomy, and evolution of HEV. It is thus unclear whether hepatitis E is a neglected disease in Brazil or it has low relevance for public health in this country. Here, for the first time, we report the presence of HEV in Northeast Brazil. A total of 119 swine faecal samples were screened for the presence of HEV RNA using real-time polymerase chain reaction (RT-PCR) and further confirmed by conventional RT-PCR; among these, two samples were identified as positive. Molecular evolution analyses based on capsid sequences revealed that the samples had close proximities to HEV sequences belonging to genotype 3 and were genetically related to subtype 3f isolated in humans. Parsimony ancestral states analysis indicated gene flow events from HEV cross-species infection, suggesting an important role of pig hosts in viral spillover. HEV's ability for zoonotic transmission by inter-species host switching as well as its possible adaptation to new animal species remain important issues for human health.


Assuntos
Fezes/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Zoonoses/virologia , Animais , Brasil , Capsídeo/virologia , Genótipo , Hepatite E/virologia , Humanos , Filogenia , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/transmissão
9.
Mem. Inst. Oswaldo Cruz ; 114: e180585, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1040627

RESUMO

Hepatitis E virus (HEV), an emerging virus associated with acute hepatic disease, leads to thousands of deaths worldwide. HEV has already been reported in Brazil; however, there is a lack of epidemiological and molecular information on the genetic variability, taxonomy, and evolution of HEV. It is thus unclear whether hepatitis E is a neglected disease in Brazil or it has low relevance for public health in this country. Here, for the first time, we report the presence of HEV in Northeast Brazil. A total of 119 swine faecal samples were screened for the presence of HEV RNA using real-time polymerase chain reaction (RT-PCR) and further confirmed by conventional RT-PCR; among these, two samples were identified as positive. Molecular evolution analyses based on capsid sequences revealed that the samples had close proximities to HEV sequences belonging to genotype 3 and were genetically related to subtype 3f isolated in humans. Parsimony ancestral states analysis indicated gene flow events from HEV cross-species infection, suggesting an important role of pig hosts in viral spillover. HEV's ability for zoonotic transmission by inter-species host switching as well as its possible adaptation to new animal species remain important issues for human health.


Assuntos
Humanos , Animais , Zoonoses/virologia , Vírus da Hepatite E/isolamento & purificação , Vírus da Hepatite E/genética , Fezes/virologia , Filogenia , Suínos , Doenças dos Suínos/transmissão , Brasil , RNA Viral , Capsídeo/virologia , Hepatite E/virologia , Análise de Sequência de DNA , Reação em Cadeia da Polimerase em Tempo Real , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...